9 research outputs found

    Hash-based hierarchical caching and layered filtering for interactive previews in global illumination rendering

    Get PDF
    Copyright © 2020 by the authors. Modern Monte-Carlo-based rendering systems still suffer from the computational complexity involved in the generation of noise-free images, making it challenging to synthesize interactive previews. We present a framework suited for rendering such previews of static scenes using a caching technique that builds upon a linkless octree. Our approach allows for memory-efficient storage and constant-time lookup to cache diffuse illumination at multiple hitpoints along the traced paths. Non-diffuse surfaces are dealt with in a hybrid way in order to reconstruct view-dependent illumination while maintaining interactive frame rates. By evaluating the visual fidelity against ground truth sequences and by benchmarking, we show that our approach compares well to low-noise path-traced results, but with a greatly reduced computational complexity, allowing for interactive frame rates. This way, our caching technique provides a useful tool for global illumination previews and multi-view rendering.German Federal Ministry for Economic Affairs and Energy (BMWi), funding the MoVISO ZIM-project under Grant No.: ZF4120902

    Analysis of reported error in Monte Carlo rendered images

    Get PDF
    Evaluating image quality in Monte Carlo rendered images is an important aspect of the rendering process as we often need to determine the relative quality between images computed using different algorithms and with varying amounts of computation. The use of a gold-standard, reference image, or ground truth (GT) is a common method to provide a baseline with which to compare experimental results. We show that if not chosen carefully the reference image can skew results leading to significant misreporting of error. We present an analysis of error in Monte Carlo rendered images and discuss practices to avoid or be aware of when designing an experiment

    Gradient-Guided Local Disparity Editing

    No full text
    Stereoscopic 3D technology gives visual content creators a new dimension of design when creating images and movies. While useful for conveying emotion, laying emphasis on certain parts of the scene, or guiding the viewer's attention, editing stereo content is a challenging task. Not respecting comfort zones or adding incorrect depth cues, for example depth inversion, leads to a poor viewing experience. In this paper, we present a solution for editing stereoscopic content that allows an artist to impose disparity constraints and removes resulting depth conflicts using an optimization scheme. Using our approach, an artist only needs to focus on important high-level indications that are automatically made consistent with the entire scene while avoiding contradictory depth cues and respecting viewer comfort.Comp Graphics & Visualisatio

    Spectral Ray Differentials

    No full text

    Progressive Spectral Ray Differentials

    No full text

    MegaViews: Scalable Many-View Rendering With Concurrent Scene-View Hierarchy Traversal

    No full text
    We present a scalable solution to render complex scenes from a large amount of viewpoints. While previous approaches rely either on a scene or a view hierarchy to process multiple elements together, we make full use of both, enabling sublinear performance in terms of views and scene complexity. By concurrently traversing the hierarchies, we efficiently find shared information among views to amortize rendering costs. One example application is many-light global illumination. Our solution accelerates shadow map generation for virtual point lights, whose number can now be raised to over a million while maintaining interactive rates.Comp Graphics & Visualisatio

    Primary Sample Space Path Guiding

    No full text
    We present a scheme for unbiased path guiding. Different from existing methods that focus on constructing structures in spatial-directional domain, we work in primary sample space. We collect records containing a few dimensions of random numbers as well as the luminance that the resulting path contributes. A multiple dimensional structure is built with collected information. After this, random numbers are drawn from this structure and is used to feed the path tracer. Using this scheme, we are able to work completely outside the rendering kernel. We demonstrate that our method is practical and can be efficient. We manage to reduce variance and reduce zero radiance paths by only working in the primary sample space.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Comp Graphics & Visualisatio
    corecore